

## Available online at www.sciencedirect.com



Biochemical and Biophysical Research Communications 299 (2002) 74-84



www.academicpress.com

# EST analysis of mRNAs expressed in neurula of Chinese amphioxus

Chun-yan Mou,<sup>a</sup> Shi-cui Zhang,<sup>b</sup> Jiang-hai Lin,<sup>a</sup> Wen-li Yang,<sup>a</sup> Wen-yan Wu,<sup>a</sup> Jian-wen Wei,<sup>a</sup> Xiao-kun Wu,<sup>a</sup> Jing-chun Du,<sup>a</sup> Zhi-yan Fu,<sup>a</sup> Lan-ting Ye,<sup>a</sup> Yang Lu,<sup>a</sup> Xiao-jin Xie,<sup>a</sup> Yi-liang Wang,<sup>a</sup> and An-long Xu<sup>a,\*</sup>

Received 15 October 2002

#### Abstract

Amphioxus, a cephalochordate, is the closest living relative to the vertebrates. In order to investigate the molecular mechanisms of the early embryogenesis of amphioxus, we constructed a neurula embryo cDNA library of Chinese amphioxus (*Branchiostoma belcheri tsingtauense*) and generated 5235 expressed sequenced tags in the present study. The initial ESTs consisted of 638 clusters and 1855 singletons, which revealed approximately 2493 unique genes in the data set. Of these sequences, 35.52% ESTs matched to known genes, 12.76% matched to other ESTs, and 51.71% had no match to any known sequences in GenBank. Interestingly we found homologous genes related to neural development and human disease. Bioinformatic analysis showed the direct evidence that the gene homologue found only in vertebrates in previous studies also exists in the amphioxus genome. This study provides a preliminary view of the gene information involved in the development of neurula embryos of Chinese amphioxus and helps our understanding of vertebrate evolution at gene level.

Keywords: Chinese amphioxus; Neurula embryo; Expressed sequence tag

© 2002 Elsevier Science (USA). All rights reserved.

In early embryogenesis of animals, the neurulation is a character of the development of deuterostomes above the level of echinoderms. It is driven by a combination of morphogenetic events within the neural plate ectoderm and nearby areas of epidermal ectoderm and results in the formation of the dorsal, hollow nerve cord [1,2]. In most craniates, neurulation is essentially an invagination of the neural plate while that of others like lampreys and teleosts an cavitation of a solid keel [3]. Though neurulation is presently regarded as one of the best understood examples of vertebrates morphogenesis, leading to the formation of a major organ rudiment, the molecular basis of neurulation remains largely unknown [4]

Amphioxus, a cephalochordate, is thought to be the closest living invertebrate relatives of the vertebrates

\* Corresponding author. Fax: +86-20-84038377. E-mail address: ls36@zsu.edu.cn (A.-l. Xu). [5,6]. Its body plan is similar to but simpler than vertebrates. Both have pharyngeal gill slits, a dorsal, hollow neural tube, a notochord, and segmented axial muscles, but amphioxus lacks neural crest and an axial skeleton. The study of amphioxus at gene level will certainly provide evidence to elucidate the evolution of vertebrates.

Amphioxus embryology is well understood from classical approaches [7,8] and neurular development has been characterized as representing the common and generalized embryonic form of a vertebrate ancestor [9].

In the neurula of amphioxus, the nonneural ectoderm detaches from the edges of the neural plate and fuses dorsally via lamellipodia over the forming neural tube. The notochord and the mesoderm are formed by folding from the dorsomedian and the dorsolateral wall of the archenterons. Subsequently, the neural plate rolls up into the neural tube which encloses a neural canal. At last a typical triploblastic embryo is formed, consisting of

Department of Biochemistry, State Open Laboratory for Marine Functional Genomics, Guangzhou Center for Bioinformatics,
 College of Life Sciences, Zhongshan (Sun Yat-Sen) University, 135 Xingangxi Road, Guangzhou 510275, PR China
 Department of Marine Biotechnology, Ocean University of Qingdao, 5 Yushan Road, Qingdao 266003, PR China

definitive ectoderm, neural tube, notochord, endoderm, and mesoderm [10]. This is possibly the primitive type of neurulation in deuterostomes [3]. The molecular investigation of the neurula of amphioxus can provide important clues to understand the development of vertebrate nervous system because the expression pattern of some amphioxus genes has been found to be similar to that of the vertebrate counterpart in previous study. Among many available techniques of molecular investigation, e.g., serial analysis of gene expression [11], differential display [12], subtraction cDNA library [13], cDNA microarray, and chip technologies [14,15], we chose cDNA library construction and expressed sequence tag (EST) sequencing to reveal the genes expressed in the neurula stage of amphioxus. Here we report the characterization of ESTs derived from neurula embryo cDNA library of Chinese amphioxus. A total of 5235 ESTs composed of 2493 clusters were generated in the present study. Analysis of the ESTs may help understanding the development of embryogenomics of this model organism, particularly a global understanding of early development of chordate nervous system.

## Materials and methods

cDNA library construction. Matured adults of a Chinese amphioxus, Branchiostoma belcheri tsingtauense, were obtained from Kioachow Bay near Qingdao, China, about a week before the onset of breeding seasons in 2000. Animals were kept in large earthen vessels with aeration and supplied with fresh seawater and plankton daily [10]. Females swimming up to lay eggs from the sand were caught with a net and immediately put into a large petri dish containing naturally inseminated seawater [15]. The neurulae were collected and quickly frozen in liquid nitrogen for cDNA library construction. Total RNA was extracted using TRIzol reagent (Gibco-BRL) according to supplier's method. cDNA was prepared using SMART cDNA library construction kit (Clontech) following manufacturer's instructions. The cDNA was ligated into pcDNA3.0 and electroporated into Escherichia coli DH5α cells using a Gene Pulser II electroporation system under standard conditions. The library contained  $6 \times 10^5$  independent clones. A total of 10,000 independent cDNA clones were picked randomly and stored at -80 °C for further analysis.

EST sequencing. Clones were thawed, inoculated directly into 96-well plates containing 1 ml LB broth, and cultured overnight. The DNAs were extracted using Vitagene 96-easy plasmid Miniprep Kit (Vitagene Biochemical Technique). The 5'-end sequencing of each cDNA was conducted in an automated ABI PRISM 3700 sequencer (Perkin–Elmer), using ABI PRISM Big-Dye Terminator v3.0 Ready Reaction Cycle Sequencing Kit (Applied Biosystems) and T7 primer.

Sequence data analysis. Sequences were edited by using programs to remove vector sequences and ambiguous regions, and then assembled into groups of sequences (clusters). The consensus sequence of each cluster was used as query sequences to search against GenBank DNA sequences with TFASTA and TBLASTX [16]. The original sequence data and analytic results were kept in our database at website (http://192.168.0.111). Annotations of possible protein-coding genes were performed and assembled for future study.

#### Results and discussion

Overview of ESTs from the Chinese amphioxus early embryos

A cDNA library was constructed from early neurula embryos of Chinese amphioxus. The average length of the insert cDNA fragments is 1 kb, ranging from 0.5 to 3 kb. The cDNA clones were randomly selected and partially sequenced to generate ESTs. Sequences shorter than 100 bases were removed and discarded. Seven ESTs consisting of vector sequences were subtracted from the initial ESTs prior to analysis. A total of 5235 ESTs were examined in the present study. The occurrences of the readable sequence lengths are shown in Fig. 1. A large fraction of the sequences ranged from 450 to 750 bp. The average length of the reads on which the following analysis was based was 524.88 bp. The initial ESTs were grouped into 2493 consensus sequences, consisting of 638 clusters that contained more than two ESTs each cluster and 1855 singletons. Distribution of those ESTs is as follows:

(1) Sixteen clusters that comprised of more than 20 ESTs each cluster contain the most abundant transcripts. They constituted 0.64% of the total contig (16 of 2493 clusters) and included 20.68% of total ESTs (1083 of 5235 ESTs). Nine of them are genes already identified in amphioxus such as cytochrome c oxidase subunits I, II, and III, NADH dehydrogenase subunits 1, 4, and 5, actin, and intermediate filament. The other six clusters are unknown genes that show no significant similarity to the genes in GenBank. It is very interesting that cluster C00444 consists of 614 clones. The consensus sequence of this gene is 1400 bp. ORF finder (open reading frame finder) analysis identified frame 2 from 551 to 652 bp and deduced 34 amino acid codons. Why the transcript of this gene is so abundant and what the possible role

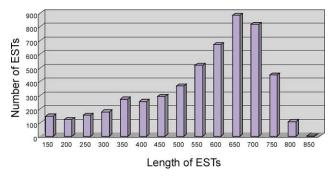



Fig. 1. The distribution of the readable length of the ESTs. A total of 5235 ESTs were generated in the present study. The ESTs consisting of vector sequences and sequences shorter than 100 bp and ambiguous regions were discarded before analysis. The readable sequence lengths ranged from 100 to 850 bp. The average length of the reads on which the following analysis was based was 524.88 bp. Abscissa (50 bp) is the length of sequences, while the *Y*-coordinate is the number of ESTs. A large fraction of ESTs is between 450 and 750 bp.

implicates in this developing stage are not clear. Experiments are being performed to identify its function. The highest expressed genes in assembled clusters are shown in Table 1.

- (2) Thirty-four clusters consisting of 10–19 ESTs each cluster consisted of 1.36% of total clusters (34 of 2493) and 8.46% of total ESTs (443 of 5235). They are represented by 12 clusters of unknown genes and recognized ones such as creatine kinase, calmodulin, NADH dehydrogenase subunit 2, catechol-*O*-methyltransferase, and SEC61. They are second abundant mRNA transcripts in the early developing embryos.
- (3) Five hundred and eighty eight clusters contained 2–9 ESTs each cluster representing 23.58% of clusters (588 of 2493 clusters) and 35.41% of ESTs (1854 of 5235 ESTs) such as calcium-binding gene, elongation factor TU, calmodulin, DNA directed RNA polymerase II, myogenic determination factor, selenium donor protein. They are medium-sized clusters with low prevalence.
- (4) One thousand eight hundred and fifty five clusters were unique sequences consisting 74.40% of clusters (1855 of 2493 clusters) and 35.43% of ESTs (1855 of 5235 ESTs). The occurrence rate for these clusters is only once in the present study. They contain regulatory proteins, transcription factors, and genes without similarities to the public databases. The distribution of the cluster sizes is shown in Fig. 2.

The cDNA library we used is a non-normalized primary one without amplification. The clone abundance or the cluster size will reflect the relative mRNA population. About one-third of the total clones belong to singleton, representing the complexity of the mRNA population of this developmental stage.

Analysis of the ESTs by matching with GenBank

The consensus sequences of each cluster were submitted to public databases to search sequence similari-

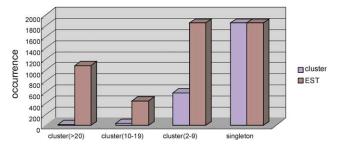



Fig. 2. Prevalence distribution of the cluster size. The initial 5235 ESTs were grouped into 2493 clusters, consisting of 16 clusters (469 of 5235 ESTs) that comprised of more than 20 ESTs each cluster, 34 clusters contained 10–19 ESTs (443 of 5235 ESTs), 589 clusters comprised 2–9 ESTs each cluster (2468 of 5235 ESTs), and 1855 unique sequences. Most ESTs belonged to medium-sized clusters and singletons representing the complexity of the mRNA stored in the neurula of Chinese amphioxus.

ties. According to the blast results, 5235 ESTs were divided into three categories: (I) 35.53% of total ESTs (1860/5235) belonging to recognized protein-coding sequences with strong matches ( $P < 10^{-12}$ ); (II) 12.76% (668/5235) being similar to functionally unidentified ESTs or cosmid sequences; and (III) 51.71% (2707/5235) having no significant similarity to any known sequences including sequences with matches higher than  $10^{-12}$  as described in Fig. 2.

Our analysis showed that 45 genes out of our dataset were previously identified in amphioxus. The remaining clusters were new genes and could be very interesting for further analysis. In category (I) 1860 ESTs, consisting of 661 distinct coding proteins, were homologous to the previously identified proteins with the average number of hits/protein 2.81 (1860/661). According to the previous classification [17], 661 proteins can be divided into three major classes: 557 proteins consisting of 1591 ESTs belonging to class A (AI–AX), which comprised a large fraction of the recognized protein-coding mRNA transcripts, containing structural and enzymatic housekeep-

| Table 1                    |                 |                     |       |
|----------------------------|-----------------|---------------------|-------|
| Assembled clusters that co | rrespond to the | e highest expressed | genes |

| Cluster | Gene description                 | Organism                  | ESTs |
|---------|----------------------------------|---------------------------|------|
| C00029  | NADH dehydrogenase subunit 4     | Branchiostoma lanceolatum | 20   |
| C00414  | Unknown                          | Unknown                   | 21   |
| C00101  | Intermediate filament protein D1 | Branchiostoma lanceolatum | 21   |
| C00102  | Unknown                          | Unknown                   | 24   |
| C00078  | Unknown                          | Unknown                   | 24   |
| C00015  | Hypothetical protein             | Mouse                     | 26   |
| C00116  | Unknown                          | Unknown                   | 27   |
| C00124  | Cytoplasmic actin                | Branchiostoma floridae    | 28   |
| C00104  | NADH dehydrogenase subunit 5     | Branchiostoma lanceolatum | 30   |
| C00111  | Cytochrome c oxidase subunit I   | Branchiostoma lanceolatum | 32   |
| C00117  | Unknown                          | Caenorhabditis elegans    | 33   |
| C00136  | NADH dehydrogenase subunit 1     | Branchiostoma lanceolatum | 43   |
| C00144  | Cytochrome c oxidase subunit II  | Branchiostoma floridae    | 46   |
| C00139  | Cytochrome c oxidase subunit III | Branchiostoma lanceolatum | 45   |
| C00209  | ATP synthase F0 subunit 6        | Branchiostoma floridae    | 49   |
| C00444  | Unknown                          | Unknown                   | 614  |

ing proteins associated with the functions of many different cells; class B (BI–BIII), consisting of 68 proteins (about 178 ESTs) associated with cell–cell communication; class C (CI–CIII), including 36 transcription factors and other gene regulatory proteins (91 ESTs altogether) as described in detail in Table 2. In class DI, 668 clones represented by 363 clusters (14.56% of the total clusters) were matched to ESTs or hypothetical proteins (mostly from *Homo sapiens*). The remaining clusters (66.14% of total clusters) were found to be no matches to the known sequences and further study should be carried out to reveal their functions. The number of partial mRNA transcripts represented in each category is listed in Table 3.

## ESTs relevant to development

The most abundant genes reported here were found to be involved in intermediary synthesis and catabolism of enzymes implying the rapid growth of the embryo body and the formation of the ectoderm, mesoblast, endoblast, definitive notochord, and neural tube, which is a typical feature for neurula embryo. In addition, neurula embryos display distinct morphological polarity

along the dorsoventral and anteroposterior axis, which is controlled by a series of genes involving BMP signaling pathway regulated by twisted gastrulation gene (Tsg). We found that a cluster homologous to Tsg, a component of BMP signaling pathway, which plays an important role to regulate embryonic dorsal-ventral patterning in flies, frogs, and fish, also influences dorsoventral polarity of the neural tube [18,19]. Identification of this gene in amphioxus suggested the conservative role of this gene in patterning formation of embryos. We also found a cluster similar to short form protein of one-eyed pinhead, which belongs to the EGF-CFC gene family essential for nodal signaling, functioned on organizer patterning. The EGF-CFC gene family plays important roles in germ layer formation, correct positioning of anterior-posterior (A-P) and leftright (L-R) axis [20,22]. Mutation of this gene resulted in cyclopia and defects in formation of endoderm, prechordal plate, and ventral neuroectoderm during zebrafish embryonic development [21]. The expressing pattern of this gene in developing embryos may identify the real function on A-P or L-R patterning in this invertebrate.

Table 2 The distribution of the genes

|       | Classes of gene function and gene anotation                                                      | Number of clusters | Number of clones |
|-------|--------------------------------------------------------------------------------------------------|--------------------|------------------|
| A     | Functions that many kinds of cells use                                                           |                    |                  |
| AI    | Transportation and binding proteins for ions and other small molecules                           | 28                 | 116              |
| AII   | RNA processing, polymereizing, splicing, and binding proteins, and enzymes                       | 39                 | 64               |
| AIII  | Cell replication, histones, cyclins and kinase, DNA polymerase, topoisomerases, DNA modification | 42                 | 103              |
| AIV   | Cytoskeleton and membrane proteins                                                               | 79                 | 200              |
| AV    | Protein synthesis co-factors, tRNA synthetases, ribosomal proteins                               | 90                 | 264              |
| AVI   | Intermediary synthesis and catabolism enzymes                                                    | 138                | 587              |
| AVII  | Stress response, detoxification, and cell defense proteins                                       | 38                 | 79               |
| AVIII | Protein degradation and processing, proteases                                                    | 45                 | 81               |
| AIX   | Apoptosis-related                                                                                | 12                 | 17               |
| AX    | Transportation and binding proteins for proteins and other macromolecules                        | 46                 | 80               |
|       | Total                                                                                            | 557                | 1591             |
| В     | Cell-cell communication                                                                          |                    |                  |
| BI    | Signaling recepors, including cytokine and hormane receptors, and signal intermediates           | 6                  | 12               |
| BII   | Intercellular signal transduction pathway molecules including kinase and signal intermediates    | 54                 | 148              |
| BIII  | Extacellular matrix proteins and cell adhesion                                                   | 8                  | 18               |
|       | Total                                                                                            | 68                 | 178              |
| C     | Transcription factors and toher gene regulatory proteins                                         |                    |                  |
| CI    | Sequence-specific DNA-binding proteins                                                           | 24                 | 61               |
| CII   | Non-DNA-binding proteins that perform positive or negative roles                                 | 12                 | 30               |
|       | Total                                                                                            | 36                 | 91               |
| D     | Others                                                                                           |                    |                  |
| DI    | Not enough information to classify                                                               | 363                | 668              |
| DII   | No significant similarities to known proteins                                                    | 1649               | 2707             |
|       | Total                                                                                            | 2493               | 5235             |

Table 3
EST sequence similarities, gene description and probability of occurrence by chance

| Class | Cluster ID                                                                                           | Accession No.          | Database entry name                               | Organisms                         | Probability        |  |
|-------|------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------|-----------------------------------|--------------------|--|
| I     |                                                                                                      |                        | ions and other small molecules                    |                                   | 1.005 50           |  |
|       | C01599                                                                                               | P21282                 | V-ATPase C subunit                                | Bos taurus                        | 1.00E - 50         |  |
|       | C00377                                                                                               | NP_062278              | Caltractin                                        | Mus musculus                      | 1E - 78            |  |
|       | C00209                                                                                               | NP_007760              | ATP synthase F0 subunit 6                         | Branchiostoma floridae            | 2E - 83            |  |
|       | C00707                                                                                               | NP_001976              | Electron-transfer-flavoprotein                    | Homo sapiens                      | 5E - 85            |  |
|       | C00386                                                                                               | AAF73513               | Voltage-dependent anion channel                   | Gallus gallus                     | 1E - 73            |  |
|       | C01637                                                                                               | AAF26679               | Voltage-dependent calcium                         | Bos taurus                        | 6E - 61            |  |
|       |                                                                                                      |                        | channel β1B subunit                               |                                   | 1E 55              |  |
|       | C01399                                                                                               | P49946                 | Frih_salsaferritin                                | Salmo salar                       | 1E – 55            |  |
|       | C00038                                                                                               | AAG37428               | ISCU2                                             | Homo sapiens                      | 6.00E - 60         |  |
| II    |                                                                                                      |                        | nd binding proteins, and enzymes                  |                                   |                    |  |
|       | C00468                                                                                               | XP_059317              | Polymerase (RNA) II                               | Homo sapiens                      | 8E - 40            |  |
|       | C01095                                                                                               | XP_035490              | Testis enhanced gene transcript                   | Homo sapiens                      | 1E - 51            |  |
|       | C01612                                                                                               | AAH07742               | Cleavage and polyadenylation specific factor 2    | Homo sapiens                      | 2E - 66            |  |
|       | C01524                                                                                               | ND 057019              | Nucleolar protein NOP5/NOP58                      | Home sanions                      | 1E 70              |  |
|       | C01524                                                                                               | NP_057018              |                                                   | Homo sapiens                      | 1E – 79            |  |
|       | C01346                                                                                               | NP_008937              | Cleavage and polyadenylation specific factor 5    | Homo sapiens                      | e – 103            |  |
|       | C00546                                                                                               | NP_005863              | Breast carcinoma amplified sequence 2             | Homo sapiens                      | 5E - 83            |  |
|       | C00345                                                                                               | NP_002687              | DNA-directed RNA polymerase II                    | Homo sapiens                      | 3E - 93            |  |
|       | C00192                                                                                               | A 42011                | polypeptide G                                     | Dattus v                          | 4E 05              |  |
|       | C00183                                                                                               | A42811                 | Nuclear RNA helicase                              | Rattus norvegicus                 | 4E – 85            |  |
|       | C00818                                                                                               | A32618                 | DNA-directed RNA polymerase                       | Homo sapiens                      | 6E - 75            |  |
|       | C00514                                                                                               | BAB62225               | Hu/elav class neuron-specific RNA-binding protein | Branchiostoma belcheri            | 4E - 60            |  |
|       | C00397                                                                                               | 159377                 | Template activating factor-I                      | Homo sapiens                      | 2E - 55            |  |
| III   | Cell replication, histones, cyclins and kinase, DNA polymerase, topoisomerases, and DNA modification |                        |                                                   |                                   |                    |  |
|       | C00368                                                                                               | XP_049960              | SWI/SNF-related,                                  | Homo sapiens                      | 3E - 50            |  |
|       | C00300                                                                                               | 711 _0-77700           | ,                                                 | 110mo sapiens                     | JL 30              |  |
|       | C01201                                                                                               | 001604                 | matrix-associated                                 | v ı ·                             | SE 67              |  |
|       | C01291                                                                                               | Q91684                 | DNA polymerase gamma subunit 1                    | Xenopus laevis                    | 5E – 67            |  |
|       | C01096                                                                                               | P56520                 | Histone deacetylase 3                             | Gallus gallus                     | e – 112            |  |
|       | C00100                                                                                               | P08991                 | Histone H2A variant                               | Strongylocentrotus                | 2E - 51            |  |
|       |                                                                                                      |                        |                                                   | purpuratus                        |                    |  |
|       | C01237                                                                                               | NP_004520              | Myeloid/lymphoid or                               | Homo sapiens                      | 1E - 56            |  |
|       |                                                                                                      |                        | mixed-lineage leukemia                            | -                                 |                    |  |
|       | C01062                                                                                               | NP_112538              | Mitogen-activated protein-binding                 | Mus musculus                      | 2E - 48            |  |
|       | C01120                                                                                               | NID 101010             | protein interacting protein                       | 4 1 1 1 1 1                       | 2E 45              |  |
|       | C01120                                                                                               | NP_191019              | Histone H2A.F/Z                                   | Arabidopsis thaliana              | 2E - 45            |  |
|       | C00582                                                                                               | NP_478143              | Histone H4                                        | Drosophila melanogaster           | 1E - 39            |  |
|       | C00336                                                                                               | P50532                 | Chromosome assembly protein XCAP-C                | Xenopus laevis                    | 2.00E - 63         |  |
|       | C00212                                                                                               | NP_009037              | Ubiquitin-like 3                                  | Homo sapiens                      | 7E - 49            |  |
|       | C00212<br>C001474                                                                                    | NP_002085              | G1 to S phase transition 1                        | Homo sapiens                      | 8E – 51            |  |
|       | C01474<br>C01474                                                                                     | CAC20564               | PD2 protein                                       | Homo sapiens<br>Homo sapiens      | 1E – 71            |  |
| ** *  |                                                                                                      |                        | - F                                               |                                   | / •                |  |
| IV    | •                                                                                                    | d membrane proteins    | Y                                                 |                                   |                    |  |
|       | C00101                                                                                               | CAA11446               | Intermediate filament protein D1                  | Branchiostoma<br>lanceolatum      | e – 176            |  |
|       | C00858                                                                                               | XP_006242              | Integral membrane protein 1                       | Homo sapiens                      | 9E - 92            |  |
|       | C00124                                                                                               | Q93131                 | Actin, cytoplasmic                                | Branchiostoma floridae            | e – 127            |  |
|       | C00124<br>C001784                                                                                    | Q27203                 | 4-Hydroxyphenylpyruvate                           | Tetrahymena                       | 6E – 56            |  |
|       | C001764                                                                                              | Q21203                 | dioxygenase                                       | thermophila                       | 0E - 30            |  |
|       | C00315                                                                                               | P28287                 | Tubulin α chain                                   | Oxytricha granulifera             | e - 115            |  |
|       | C001296                                                                                              | P12716                 | Actin, cytoplasmic                                | Pisaster ochraceus                | 4E - 98            |  |
|       | C001290                                                                                              | P02578                 | Actin 1                                           | Acanthamoeba castellanii          | e – 115            |  |
|       |                                                                                                      |                        |                                                   |                                   |                    |  |
|       | C00845                                                                                               | NP_523517              | COP9 complex homolog subunit 2                    | Drosophila melanogaster           | 1E – 88            |  |
|       |                                                                                                      | NP_523366              | Cyclophilin 1                                     | Drosophila melanogaster           | 1E – 67            |  |
|       | C00145                                                                                               |                        |                                                   | D                                 | 2E 65              |  |
|       | C00145<br>C01627                                                                                     | NP_476489              | Septin 2                                          | Rattus norvegicus                 | 3E - 65            |  |
|       |                                                                                                      | NP_476489<br>NP_291024 | Septin 2<br>Myosin regulatory light chain         | Rattus norvegicus<br>Homo sapiens | 3E - 65<br>2E - 81 |  |
|       | C01627                                                                                               |                        |                                                   |                                   |                    |  |

Table 3 (continued)

| Class | Cluster ID        | Accession No.               | Database entry name                                               | Organisms                    | Probabilit            |
|-------|-------------------|-----------------------------|-------------------------------------------------------------------|------------------------------|-----------------------|
| V     | Protein synthesis | co-factors, tRNA syntl      | netases, ribosomal proteins                                       |                              | -                     |
|       | C00734            | Q9GR88                      | Eukaryotic peptide chain release                                  | Polyandrocarpa               | 3E - 72               |
|       |                   |                             | factor subunit 1                                                  | misakiensis                  |                       |
|       | C00426            | Q26481                      | 60S ribosomal protein L5                                          | Styela clava                 | 2E - 79               |
|       | C00014            | P29520                      | Elongation factor $1-\alpha$                                      | Bombyx mori                  | 5E – 92               |
|       | C00224            | NP_230016                   | Elongation factor TU                                              | Vibrio cholerae              | 2.00E - 87            |
|       | C00224<br>C00316  | O61231                      | 60S ribosomal protein L10                                         | Drosophila melanogaster      | e – 106               |
|       |                   | NP 243976                   |                                                                   |                              |                       |
|       | C01373            | NP_243970                   | Phenylalanyl-tRNA synthetase β subunit                            | Bacillus halodurans          | 1.00E – 23            |
|       | C00272            | O01727                      | 40S ribosomal protein S6                                          | Branchiostoma floridae       | e - 104               |
|       | C01712            | NP_036182                   | Ribosomal protein S3                                              | Mus musculus                 | 2E - 89               |
|       | C00980            | NP_005042                   | Glutaminyl-tRNA synthetase                                        | Homo sapiens                 | 1E - 61               |
|       | C00966            | NP_001003                   | Ribosomal protein S8                                              | Homo sapiens                 | 1E - 91               |
|       | C01436            | NP_231888                   | Ribosome recycling factor                                         | Vibrio cholerae              | 4.00E - 42            |
|       | C00013            | BAB63215                    | EF-1a                                                             | Branchiostoma floridae       | 3E-61                 |
|       | C01467            | BAA92160                    | Eukaryotic polypeptide chain                                      | Oryctolagus cuniculus        | 2E – 92               |
|       | C01407            | BAA92100                    | release factor 3                                                  | Oryciolagus cuniculus        | 2E - 92               |
| VI    |                   | thesis and catabolism en    |                                                                   |                              |                       |
|       | C01561            | XP_037869                   | Pyruvate dehydrogenase kinase                                     | Homo sapiens                 | 1E - 76               |
|       | C00007            | Q27238                      | ADP, ATP carrier protein                                          | Anopheles gambiae            | 5E - 70               |
|       | C00595            | P56966                      | Geranylgeranyl pyrophosphate synthetase                           | Bos taurus                   | 2E - 82               |
|       | C00570            | D40000                      |                                                                   | D                            | 15 66                 |
|       | C00579            | P49088                      | Asparagine synthetase                                             | Rattus norvegicus            | 1E – 66               |
|       | C00677            | P46472                      | 26S protease regulatory subunit 7                                 | Xenopus laevis               | 4E - 80               |
|       | C00200            | P42026                      | NADH-ubiquinone oxidoreductase                                    | Bos taurus                   | 3E - 84               |
|       | C00601            | P26990                      |                                                                   | Callera callera              | 6E - 72               |
|       |                   |                             | ADP-ribosylation factor 6                                         | Gallus gallus                |                       |
|       | C00538            | P10658                      | Phosphoserine aminotransferase                                    | Oryctolagus cuniculus        | 3E – 90               |
|       | C01757            | NP_488456                   | Cystathionine β-synthase                                          | Nostoc sp. PCC 7120          | 6E - 75               |
|       | C00318            | NP_036379                   | Selenophosphate synthetase                                        | Homo sapiens                 | 6E - 61               |
|       | C00144            | NP_007758                   | Cytochrome c oxidase subunit II                                   | Branchiostoma floridae       | e - 108               |
|       | C01754            | CAA04917                    | Phenylalanine hydroxylase                                         | Branchiostoma floridae       | 6E - 83               |
|       | C01615            | A24050                      | Ribonucleoside-diphosphate reductase                              | Mus musculus                 | 1E – 80               |
| VII   | Stress response,  | detoxification, and cell of | defense proteins                                                  |                              |                       |
|       | C01127            | XP_001655                   | HSPCO34 protein                                                   | Homo sapiens                 | 4E - 33               |
|       | C01104            | S37284                      | Cytochrome P450 2D                                                | Bos taurus                   | 1E - 34               |
|       | C00463            | P46633                      | HSP 90-ALPHA                                                      | Cricetulus griseus           | 2E - 38               |
|       |                   |                             |                                                                   |                              |                       |
|       | C00281            | BAB70508                    | Prostate cancer antigen-1                                         | Homo sapiens                 | 5.00E - 84            |
|       | C01305            | P08108                      | Heat shock cognate 70                                             | Oncorhynchus mykiss          | 6E – 83               |
|       | C00423            | NP_112478                   | Tissue specific transplantation antigen P35B                      | Mus musculus                 | e – 103               |
|       | C01632            | NP_062266                   | Polymyositis/scleroderma                                          | Mus musculus                 | 1E - 49               |
|       |                   |                             | autoantigen 1                                                     |                              | 4=                    |
|       | C00683            | NP_032857                   | Prohibitin                                                        | Mus musculus                 | 1E - 45               |
|       | C00534            | CAC38780                    | Allograft inflammatory factor 1                                   | Suberites domuncula          | 8E - 39               |
|       | C01713            | CAB89875                    | CD81 protein                                                      | Saguinus oedipus             | 3E - 27               |
|       | C00917            | AAH00864                    | Sjogren*s syndrome nuclear autoantigen 1                          | Homo sapiens                 | 1E - 38               |
| VIII  | Protein degradat  | ion and processing, pro-    |                                                                   |                              |                       |
| -     | C00217            | S38529                      | Multicatalytic endopeptidase                                      | Xenopus sp.                  | 2E - 91               |
|       | 200217            | 550000                      | complex                                                           | rempto op.                   | /1                    |
|       | C01725            | Q03168                      | •                                                                 | Andas accumti                | 2E - 30               |
|       | C01725            | Q03100                      | Lysosomal aspartic protease                                       | Aedes aegypti                | ∠E = 30               |
|       | G01.55C           | DAGES                       | precursor                                                         | **                           | 25                    |
|       | C01570            | P30759                      | Arginase                                                          | Xenopus laevis               | 2E - 43               |
|       | C00415            | NP_064335                   | Signal peptidase complex (18 kDa)                                 | Mus musculus                 | 7.00E – 86            |
|       | C00996            | NP_071720                   | Cathepsin Z                                                       | Mus musculus                 | 5E - 87               |
|       | C01052            | NP_001152                   | Nudix                                                             | Homo sapiens                 | 1.00E – 40            |
|       | C00794            |                             |                                                                   | *                            |                       |
|       | C00794<br>C01336  | NP_005330<br>NP_003336      | Huntingtin interacting protein 2 Ubiquitin-conjugating enzyme E2I | Homo sapiens<br>Homo sapiens | 4.00E - 72<br>3E - 82 |
|       |                   | DUE 11113336                | LIDIGUUD-CONINGSIING ENZYME H / I                                 | Homo samens                  | 3E - 82               |
|       | C01821            | CAB50892                    | Ubiquitin fusion protein                                          | Kluyveromyces lactis         | 2E - 58               |

Table 3 (continued)

| Class    | Cluster ID                                                                                    | Accession No.            | Database entry name                  | Organisms               | Probability |  |
|----------|-----------------------------------------------------------------------------------------------|--------------------------|--------------------------------------|-------------------------|-------------|--|
| IX       | Apoptosis-related                                                                             |                          |                                      |                         |             |  |
|          | C01993                                                                                        | XP_005698                | programmed cell death 4              | Homo sapiens            | 7E - 30     |  |
|          | C01952                                                                                        | NP_003066                | SWI/SNF-related,                     | Homo sapiens            | 4E - 92     |  |
|          |                                                                                               | _                        | matrix-associated, actin-dependent   | •                       |             |  |
|          |                                                                                               |                          | regulator of chromatin, subfamily c, |                         |             |  |
|          |                                                                                               |                          | member 2; Rsc8                       |                         |             |  |
|          |                                                                                               | XP_035490                | testis enhanced gene transcript      | Homo sapiens            | 1E – 51     |  |
|          |                                                                                               | 711 _033470              | (BAX inhibitor 1)                    | 110mo supiens           | 1E 31       |  |
|          | C00829                                                                                        | JC7093                   | Fas-associated factor 1              | Homo sapiens            | 5E - 32     |  |
| λX       | Transportation ar                                                                             | nd hinding proteins for  | proteins and other macromolecules    |                         |             |  |
|          | C01318                                                                                        | XP_034765                | Vesicle trafficking protein sec22b   | Homo sapiens            | 1.00E - 52  |  |
|          | C01478                                                                                        | XP_010296                | Transient receptor potential         | Homo sapiens            | 9E – 23     |  |
|          | C01476                                                                                        | AI _010270               | channel 5                            | 110mo supiens           | )L 23       |  |
|          | C00616                                                                                        | Q9PRL8                   | Acyl-CoA-binding protein             | Gallus gallus           | 4E - 31     |  |
|          |                                                                                               | ~                        |                                      | ~                       |             |  |
|          | C00537                                                                                        | Q94519                   | Acyl carrier protein                 | Drosophila melanogaster | 5E – 34     |  |
|          | C01639                                                                                        | NP_511039                | Solute carrier family 35             | Mus musculus            | 1E – 53     |  |
|          | C00566                                                                                        | NP_477137                | UbcD2-P1                             | Drosophila melanogaster | 4E - 30     |  |
|          | C01268                                                                                        | NP_064654                | Solute carrier family 37             | Mus musculus            | 2E - 37     |  |
|          | C00431                                                                                        | AAD34970                 | T-complex polypeptide 1              | Danio rerio             | 2.00E - 97  |  |
|          | C00568                                                                                        | NP_058927                | Phosphatidylinositol transfer        | Rattus norvegicus       | 2E - 76     |  |
|          |                                                                                               |                          | protein                              |                         |             |  |
|          | C01108                                                                                        | NP_055043                | Solute carrier family 6, member 7    | Homo sapiens            | 1E - 48     |  |
|          | C00446                                                                                        | NP_031664                | Chaperonin subunit 7                 | Mus musculus            | 5.00E - 74  |  |
|          | C00619                                                                                        | NP 002257                | Karyopherin α 2                      | Homo sapiens            | 2E-41       |  |
|          | C01771                                                                                        | NP 001275                | Adaptor-related protein complex 3,   | Homo sapiens            | 1E – 82     |  |
|          | 001771                                                                                        | 111_0012/3               | sigma 1 subunit                      | Tomo suprems            | 12 02       |  |
|          | C00380                                                                                        | AAK50397                 | GDP-fucose transporter               | Homo sapiens            | 4E - 72     |  |
|          | C00380                                                                                        | AAK30397                 | ODI-rucose transporter               | Homo supiens            | 46-72       |  |
| 3I       | Signaling recepors, including cytokine and hormane receptors, and signal intermediates        |                          |                                      |                         |             |  |
|          | C00325                                                                                        | AAK27327                 | Twisted gastrulation protein         | Xenopus laevis          | 4E - 27     |  |
|          | C00453                                                                                        | AAC04339                 | One-eyed pinhead short form          | Danio rerio             | 6E - 20     |  |
|          |                                                                                               |                          | protein                              |                         |             |  |
|          | C01386                                                                                        | AAF27548                 | PTP36-A isoform                      | Mus musculus            | 2E - 36     |  |
| BII      | Intercellular signal transduction pathway molecules including kinase and signal intermediates |                          |                                      |                         |             |  |
|          | C00542                                                                                        | O45040                   | Guanine nucleotide-binding           | Homarus americanus      | e - 172     |  |
|          |                                                                                               |                          | protein                              |                         |             |  |
|          | C00941                                                                                        | Q05975                   | RAS-related protein RAB-2            | Lymnaea stagnalis       | 1E - 57     |  |
|          | C00842                                                                                        | P79735                   | GTP-binding nuclear protein Ran      | Danio rerio             | e – 101     |  |
|          | C00550                                                                                        | NP_524175                | Neurocalcin                          | Drosophila melanogaster | 1E – 72     |  |
|          |                                                                                               | <del>-</del>             |                                      |                         |             |  |
|          | C01376                                                                                        | NP_005361                | Mel transforming oncogene            | Homo sapiens            | 2E – 80     |  |
|          | C00208                                                                                        | AAB97725                 | Calumenin                            | Homo sapiens            | 4E – 74     |  |
|          | C01183                                                                                        | AAL31764                 | cAMP-specific phosphodiesterase      | Rattus norvegicus       | 1E - 34     |  |
|          | <b>200</b> 2                                                                                  |                          | isoform                              |                         |             |  |
|          | C00487                                                                                        | AAK29780                 | Creatine kinase                      | Branchiostoma floridae  | e - 125     |  |
|          | C01750                                                                                        | AAG33129                 | MER receptor tyrosine kinase         | Homo sapiens            | 2E - 72     |  |
|          | C00235                                                                                        | NP_509939                | 14-3-3 protein                       | Caenorhabditis elegans  | 4E - 89     |  |
|          | C00976                                                                                        | NP_062652                | Trk-fused gene                       | Mus musculus            | 5E - 55     |  |
|          | C00657                                                                                        | AAD12256                 | GTP-binding protein                  | Gallus gallus           | 3E - 86     |  |
| III      | Extracellular mate                                                                            | rix proteins and cell ad | hesion                               |                         |             |  |
|          | C01552                                                                                        | P26043                   | Radixin                              | Mus musculus            | 2E - 80     |  |
|          | C01332<br>C01160                                                                              |                          | Membrane interacting protein of      |                         | 4E - 31     |  |
|          | C01100                                                                                        | NP_057725                | RGS16                                | Homo sapiens            | 4E = 31     |  |
|          | C00526                                                                                        | I51670                   | Focal adhesion kinase pp125FAK       | Xenopus laevis          | 1E-83       |  |
|          | C02023                                                                                        | AAG00570                 | Embryonic blastocoelar extracellular | Lytechinus variegatus   | 3E - 49     |  |
|          |                                                                                               |                          | matrix protein precursor             |                         | -           |  |
|          | C00247                                                                                        | NP_033268                | Secreted acidic cysteine rich        | Mus musculus            | 7E - 55     |  |
|          | 200211                                                                                        | 1.1_000200               | glycoprotein                         |                         | , 2 33      |  |
| I        | Saguanca specific                                                                             | DNA hinding proteins     | • •                                  |                         |             |  |
| <b>1</b> |                                                                                               | DNA-binding proteins     |                                      | <i>II</i>               | 4E 21       |  |
|          | C01117                                                                                        | XP_041992                | Kruppel-like zinc finger protein     | Homo sapiens            | 4E – 31     |  |
|          | C000001                                                                                       |                          |                                      | Homo canions            | 16 47       |  |
|          | C00991                                                                                        | NP_079517                | UBX domain-containing 1              | Homo sapiens            | 1E – 47     |  |
|          | C00991<br>C00433                                                                              | NP_079517<br>NP_056647   | Methyl-CpG-binding domain protein 2  | Homo sapiens            | 3E - 32     |  |

Table 3 (continued)

| Class | Cluster ID   | Accession No.             | Database entry name                            | Organisms         | Probability |
|-------|--------------|---------------------------|------------------------------------------------|-------------------|-------------|
|       | C01055       | NP_035780                 | Translin                                       | Mus musculus      | 6E – 39     |
|       | C01443       | NP_033580                 | Zinc finger protein 37                         | Mus musculus      | 9E - 54     |
|       | C00249       | NP_005639                 | Transcription elongation factor B              | Homo sapiens      | 1E - 56     |
|       | C02161       | BAA01477                  | Zinc finger protein                            | Mus musculus      | 2E - 98     |
|       | C00012       | XP_067318                 | Elongation factor 1-α 1                        | Homo sapiens      | 2E - 95     |
|       | C01049       | NP_006521                 | Glioma-amplified sequence-41                   | Homo sapiens      | 4E - 47     |
|       | C00309       | NP_037374                 | Mouse Glt3                                     | Homo sapiens      | e - 107     |
| CII   | Non-DNA-bind | ing proteins that perforr | n positive or negative roles                   |                   |             |
|       | C00436       | XP_012145                 | Small nuclear ribonucleoprotein polypeptide F  | Homo sapiens      | 7E - 36     |
|       | C00611       | NP_035405                 | Ribonuclease H1                                | Mus musculus      | 5E - 48     |
|       | C00296       | NP_004166                 | Small nuclear ribonucleoprotein D3 polypeptide | Homo sapiens      | 5E - 40     |
|       | C00405       | NP_003085                 | Small nuclear ribonucleoprotein polypeptide E  | Homo sapiens      | 4E - 35     |
|       | C01351       | CAC44272                  | XNop56 protein                                 | Xenopus laevis    | 4E - 19     |
|       | C00987       | BAA37095                  | Ribonucleoprotein F                            | Rattus norvegicus | 3E - 33     |

Four clusters, homologous to neurocalcin [23], choline cotransporter [24,25], Zic3-binding protein [26], and CYFIP [27], respectively, were first identified in amphioxus in our study. These four genes play important roles in neuronal functions and neural development. NC, a neuron-specific EF-hand Ca<sup>2+</sup>-binding protein belonging to a novel family of neuronal calcium sensors, was found primarily in vertebrate brain and retina. It was proposed to play a role in calcium-dependent regulation of enzymes in signal transduction pathways and be involved in control of neuron function [23]. CHT is essential to cholinergic transmission and rate limiting in

the biosynthesis of acetylcholine. The expression of CHT was restricted to brain regions rich in cholinergic neurons including the putamen, spinal cord, and medulla in human, mouse, and *C. elegans* [24,25]. Zic3-binding protein was expressed mainly in the developing nervous system, with high levels of expression in the proliferating neuroepithelium of the brain and the neural tube, and the dorsal root ganglia during embryonic development in the mouse [26]. CYFIP is shown to interact with the small GTPase Rac1, which devotes to the development and maintenance of neuronal structures [27]. Genes mentioned above are listed in Table 4.

Table 4 Clusters homologous to the genes found in the previous study

| Cluster ID | Accession No. | Gene description                                              | Organisms               |
|------------|---------------|---------------------------------------------------------------|-------------------------|
| C00514     | BAB62225      | Hu/elav class neuron-specific RNA-binding protein             | Branchiostoma floridae  |
| C01476     | AAG33015      | Mnx homeodomain protein                                       | Branchiostoma floridae  |
| C00971     | AAF19841      | Bone morphogenetic protein 2/4                                | Branchiostoma belcheri  |
| C01583     | BAA78620      | AmphiHox1                                                     | Branchiostoma floridae  |
| C00453     | AAC04339      | One-eyed pinhead short form protein                           | Danio rerio             |
| C01362     | AAG41055      | Choline cotransporter                                         | Limulus polyphemus      |
| C00550     | NP_524175     | Neurocalcin                                                   | Drosophila melanogaster |
| C01119     | AAD22979      | Zinc3-binding protein                                         | Xenopus laevis          |
| C01535     | JC5496        | Prox 1 protein 671                                            | Chicken                 |
| C00669     | AAK64276      | Ephrin B2b                                                    | Danio rerio             |
| C00913     | AAG61253      | Cyfip                                                         | Danio rerio             |
| C01828     | BAB40596      | Ci-META1                                                      | Ciona intestinalis      |
| C00713     | CAB56698      | Sec61β protein                                                | Drosophila melanogaster |
| C01786     | P97603        | Neo1_rat neogenin precursor gb                                | Rattus norvegicus       |
| C02023     | AAG00570      | Embryonic blastocoelar extracellular matrix protein precursor | Lytechinus variegatus   |
| C00434     | AAK61351      | Translocon-associated protein β                               | Danio rerio             |
| C00325     | AAK27327      | Twisted gastrulation protein                                  | Xenopus laevis          |
| C00235     | NP_509939     | 14-3-3 protein                                                | Caenorhabditis elegans  |
| C01117     | XP_041992     | Kruppel-like zinc finger protein                              | Homo sapiens            |
| C02073     | AAC69756      | LIM-domain protein                                            | Branchiostoma floridae  |
| C02070     | AAF19840      | Secreted protein Wnt8                                         | Branchiostoma belcheri  |
| C00013     | BAB63215      | EF-1a [Branchiostoma floridae]                                | Branchiostoma floridae  |
| C02092     | AAK58840      | Homeobox amphivent                                            | Branchiostoma floridae  |
| C00002     | AAL47678      | Myogenic determination factor                                 | Branchiostoma belcheri  |

Zinc finger proteins play important roles in embryonic development. We identified 15 clusters of zinc finger proteins such as zfp-37 and REST protein. Protein zfp-37, a structural protein of the neuronal nucleus, is expressed in neurons of the developing and adult CNS of mouse [30,31]. While REST protein is a zinc finger transcription factor to repress the expression of neuron-specific genes in non-neural tissues and undifferentiated neural precursors during early embryogenesis [32].

## ESTs homologous to immune or disease-related genes

Bioinformatic analysis showed that 19 distinct disease-related genes were found in the present study (Table 5), in which one (C00238) being already identified in Chinese amphioxus (AAK84394), four similar to those of Mus musculus, 12 relevant to human disease genes, and two homologous to other organisms. Half of these genes have E-values lower than  $1 \times 10^{-30}$ , indicating that though they may not be significantly homologous to disease proteins, the related proteins and portions of the proteins existed in amphioxus and conserved in the evolution history. Most of them were syndrome related genes or antigen. They will be useful to investigate the molecular and biochemical activities of human disease proteins and further elucidate the mechanisms of human disease. A most interesting gene (C00522) is pituitary tumor-transforming gene (PTTG)binding factor precursor. This gene product binds PTTG, an oncogene, facilitates its nuclear translocation, and potentially regulates its transcriptional activation [33].

#### ESTs similar to unidentified proteins

Of the sequences similar to unidentified proteins, most of them had shown similarities to hypothetical proteins in human and Mus musculus. These results are the direct evidence that homologues of vertebrate gene families probably existed in the amphioxus genome since amphioxus is thought to be the closest living invertebrate relatives of the vertebrates. Furthermore, the molecular information directed early embryo development is remarkably conserved among animals in terms of evolution.

#### ESTs identifying no significant matches to known genes

Clusters (66.14%) have no significant matches to any known genes in GenBank. We analyzed partial sequences by checking the putative coding sequences one by one. ORF of a total of 737 clusters (29.56% of the examined ESTs) was determined and analyzed according to the stop codons. The lengths of the nucleotides between start and stop codons were classified into 10 bp bins and the number of clusters was calculated accordingly [17], and the results of the statistical analysis are shown in Fig. 3. The data indicate that the peak distribution of the lengths is between 50 and 250 bp. The results are similar to those of the analysis of 7-h sea urchin embryos [17], in which the possible proteincoding sequences were 50-200 bp in their data. A large fraction lies between 90 and 100 bp, represented by more than 60 ESTs. In the present study the occurrence of 90–100 bp is 56. Both showed that the possible proteincoding sequences of no matches to known genes are

Table 5 Putative disease-related genes

| Cluster ID | Accession No. | Description                              | Organisms              | Probability |
|------------|---------------|------------------------------------------|------------------------|-------------|
| C00546     | NP_005863     | Breast carcinoma amplified sequence 2    | Homo sapiens           | 5.00E - 83  |
| C01428     | NP_113601     | Cat eye syndrome chromosome region       | Homo sapiens           | 2.00E - 51  |
| C01491     | NP_004928     | Cystinosis, nephropathic                 | Homo sapiens           | 1.00E - 25  |
| C00645     | NP_004690     | XAP-5 protein                            | Homo sapiens           | 5.00E - 15  |
| C00778     | NP_149105     | MADP-1 protein                           | Homo sapiens           | 8.00E - 15  |
| C00868     | NP_036347     | Meningioma expressed antigen 5           | Homo sapiens           | 6.00E - 34  |
| C00281     | BAB70508      | Prostate cancer antigen-1                | Homo sapiens           | 5.00E - 84  |
| C01750     | AAG33129      | MER receptor tyrosine kinase             | Homo sapiens           | 2.00E - 72  |
| C00522     | NP_004330     | Pituitary tumor-transforming protein     | Homo sapiens           | 2.00E - 29  |
|            |               | 1-interacting protein precursor          |                        |             |
| C02016     | NP_003711     | Down syndrome critical region protein 2  | Homo sapiens           | 1.00E - 21  |
| C00490     | AAD47291      | Amyloid precursor protein homolog HSD-2  | Homo sapiens           | 5.00E - 18  |
| C01233     | NP_000544     | Werner syndrome protein                  | Homo sapiens           | 1.00E - 23  |
| C00257     | NP_062369     | AMMECR1 protein                          | Mus musculus           | 1.00E - 67  |
| C00976     | NP_062652     | Trk-fused gene                           | Mus musculus           | 5.00E - 55  |
| C00784     | BAB27938      | Sjogren*s syndrome/scleroderma           | Mus musculus           | 3.00E - 31  |
|            |               | autoantigen 1                            |                        |             |
| C01632     | NP_062266     | Polymyositis/scleroderma autoantigen 1   | Mus musculus           | 1.00E - 49  |
| C00238     | AAK84394      | Translationally controlled tumor protein | Branchiostoma belcheri | 4.00E - 94  |
| C00913     | AAG61253      | Cyfip                                    | Danio rerio            | 2.00E - 45  |
| C01154     | Q17103        | Myc protein (C-MYC)                      | Asterias vulgaris      | 2.00E – 23  |

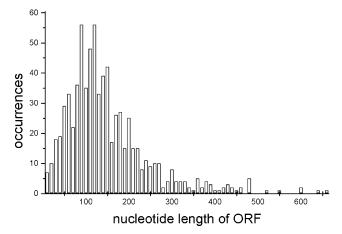



Fig. 3. Statistical analysis of the sequences showing no matches to known genes. We analyzed 786 consensus sequences of the clusters without matches to known genes in GenBank by checking the putative coding sequences one by one. The largest ORF was determined and the lengths of the nucleotides between start and stop codons were calculated and classified into 10 bp bins and the number of clusters was calculated accordingly. Of those, 49 sequences having no stop codons were not shown in this histogram and 737 sequences were statistically estimated. The peak distribution of the lengths is between 50 and 250 bp.

around 100 bp. Analysis indicates that about 68% of the total no-match ESTs are the codogenic sequences of mRNAs, similar to those of early sea urchin embryos (65–80%). We count the distribution of the sequence length mostly ranging from 400 to 750 bp and exclude the possibility that too short sequences lead to no hits. The high abundance of these sequences may correspond to the complexity of mRNA transcripts stored in early embryos, and why is complicated is not very clear by now (see Fig. 4).

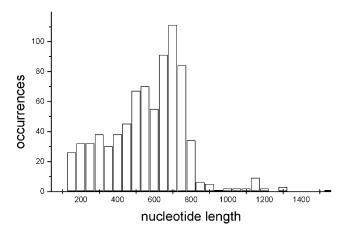



Fig. 4. Length distribution of the sequences of no matches to known genes. A total of 786 consensus sequences showing no matches to known genes in GenBank consisting of 119 clusters and 667 singletons were calculated to obtain the histogram. Abscissa (50 bp) is the readable length of sequences, while the *Y*-coordinate is the occurrences of the ESTs. The statistical estimation showed that the readable length is mostly 400–705 bp excluding the possibility that too short sequences lead to no hits.

Amphioxus is genomically and structurally simpler than vertebrates since it has not undergone the genome duplications that occurred early in vertebrate evolution [34]. For example, earlier studies have suggested that amphioxus contains comparable regions to vertebrate diencephalons and hindbrain and partly midbrain except isthmocerebrellar region [35]. The further genetic studies of amphioxus will provide simpler terms not only on neural development but a global molecular mechanism comparing to the complexity of vertebrate.

In short, a total of 5235 ESTs consisting of 2493 clusters derived from neurula of Chinese amphioxus were examined in the present study. Identification of the genes related to diseases and neural development provides valuable insights into the molecular mechanism of neryous development and possible explanation for diseases. The ESTs homologous to unidentified proteins and sequences showing no similarities to known genes were also discussed. Although the ESTs we generated are derived from a non-normalized cDNA library, and only a part collection are sequenced and analyzed, our data still can provide interesting information for understanding molecular basis of neural development. The study of ESTs in this paper provides a global understanding of the mRNA transcripts that existed in neurula of amphioxus embryos and a resource for further investigation of embryogenomics of amphioxus. Furthermore, this study provides further insights into the evolution of the chordates at gene level. However, further functional analysis of those EST clusters (or genes) with or without matches to known sequences in GenBank will certainly be needed to elucidate the functions of interesting genes.

## Acknowledgments

We thank Guijun Zhao, Ning Zhang, Bing Xu, Huihui Kong, and Ting Jia for their help with the data analysis. This research was supported by a grant from State High-Tech Development Project (863) of Ministry of Science and Technology of China (2001AA626010), a key grant of National Natural Science Foundation (69935020), a key grant of Ministry of Education (Key 0107), and key grants of Commission of Science and Technology of Guangdong Province and Guangzhou City.

#### References

- G.C. Schoenwolf, J.L. Smith, Mechanisms of neurulation: traditional viewpoint and recent advances, Development 109 (1990) 243–270.
- [2] J.D. Moury, G.C. Schoenwolf, Cooperative model of epithelial shaping and bending during avian neurulation: autonomous movements of the neural plate, autonomous movements of the epidermis, and interactions the neural plate/epidermis transition zone, Dev. Dynam. 204 (1995) 323–337.
- [3] N.D. Holland, L.H. Grace Panganiban Erika, L.Z. Holland, Sequence and developmental expression of AmphiDII, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest, Development 122 (1996) 2911–2920.

- [4] Jean-francois cloas, C.S. Gary, Towards a cellular and molecular understanding of neurulation, Dev. Dyn. 221 (2001) 117–145.
- [5] H. Wada, N. Satoh, Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA, Proc. Natl. Acad. Sci. USA 91 (1994) 1801–1804.
- [6] J.M. Turbeville, J.R. Schulz, R.A. Raff, Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology, Mol. Biol. Evol. 11 (1994) 648–655.
- [7] B. Hatschek, The Amphioxus and its Development, Swan Sonnenschein, London, 1893.
- [8] E.G. Conklin, The embryology of amphioxus, J. Morphol. 54 (1932) 69–151.
- [9] O.E. Nelson, Comparative Embryology of the Vertebrates, McGraw-Hill, New York, 1953.
- [10] R. Hirakow, N. Kajita, Electron microscopic study of the development of amphioxus, *Branchiostbelcheri belcheri tsing- tauense*: the neurula and larva, Acta Anat. Nippon. 69 (1994) 1–13.
- [11] Velculescu, V.E. Lin Zhang, V. Bert, W.K. Kenneth, Serial analysis of gene expression, Science 270 (1995) 484–487.
- [12] P. Liang, A.B. Pardee, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science 257 (1992) 967–971.
- [13] T.D. Sargent, I.B. David, Differential gene expression in the gastrula of *Xenopus laevis*, Science 222 (1983) 135–139.
- [14] D.J. Lockhart, E.A. Winzeler, Genomics, gene expression and DNA arrays, Nature 405 (2000) 827–836.
- [15] T.R. Hughes, D.D. Shoemaker, DNA microarrays for for expression profiling, Curr. Opin. Chem. Biol. 5 (2001) 21–25.
- [16] D.A. Benson, I.I. Karsch-Mizrachi, D.J. Ipman, J. Ostell, B.A. Rapp, D.L. Wheeler, Nucleic Acids Res. 28 (2000) 15–18.
- [17] Y.-H. Lee, G.M. Huang, R.A. Cameron, G. Graham, E.H. Davidson, L. Hood, R.J. Britten, EST analysis of gene expression on early cleavage-stage sea urchin embryos, Development 126 (1999) 3857–3867.
- [18] Y.J. Jeffre, S. Ross Osamu, V. Peter, Annapetryk, K. Hyon, G. Karin, H. Spencer, C.E. Stephen, B.O. Michael, J.L. Marsh, Twisted gastrulation is a conserved extracellular BMP antagonist, Nature 410 (2001) 479–483.
- [19] P. Vilmos, K. Gaudenz, Z. Hegedus, J.L. Marsh, The twisted gastrulation family of proteins, together with the IGFBP and CCN families, comprise the TIC superfamily of cysteine rich secreted factors, Mol. Pathol. 54 (5) (2001) 317–323.
- [20] R.N. Bamford, E. Roessler, R.D. Burdine, U. Saplakoglu, J. dela Cruz, M. Splitt, J.A. Goodship, J. Towbin, P. Bowers, G.B. Ferrero, B. Marino, A.F. Schier, M.M. Shen, M. Muenke, B. Casey, Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects, Nat. Genet. 26 (2000) 365–369.

- [21] J. Zhang, W.S. Talbot, A.F. Schier, Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation, Cell 92 (1998) 241–251.
- [22] J. Ding, L. Yang, Y.T. Yan, A. Chen, N. Desai, A. Wynshaw-Boris, M.M. Shen, Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo, Nature 395 (1998) 702–707.
- [23] J.R. Dyer, W.S. Sossin, M. Klein, Cloning and characterization of aplycalcin and *Aplysia neurocalcin*, two new members of the calmodulin superfamily of small calcium-binding proteins, J. Neurochem. 67 (1996) 932–942.
- [24] T. Okuda, T. Haga, Y. Kanai, H. Endou, T. Ishihara, I. Katsura, Identification and characterization of the high-affinity choline transporter, Nat. Neurosci. 3 (2000) 120–125.
- [25] S. Apparsundaram, S.M. Ferguson, R.D. Blakely, Molecular cloning and characterization of a murine hemicholinium-3-sensitive choline transporter, Biochem. Soc. Trans. 29 (Pt 6) (2001) 711–716.
- [26] K. Vetter, W. Wurst, Expression of a novel mouse gene 'mbFZb' in distinct regions of the developing nervous system and the adult brain, Mech. Dev. 100 (1) (2001) 123–125.
- [27] A. Schenck, B. Bardoni, A. Moro, C. Bagni, J.L. Mandel, A highly conserved protein family interacting with the fragile × mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P, Proc. Natl. Acad. Sci. USA 98 (15) (2001) 8844–8849.
- [28] Deleted in proofs.
- [29] Deleted in proofs.
- [30] N. Mazarakis, D. Michalovich, A. Karis, F. Grosveld, N. Galjart, Zfp-37 is a member of the KRAB zinc finger gene family and is expressed in neurons of the developing and adult CNS, Genomics 33 (1996) 247–257.
- [31] E. Payen, T. Verkerk, D. Michalovich, S.D. Dreyer, A. Winterpacht, B. Lee, C.I. De Zeeuw, F. Grosveld, N. Galjart, The centromeric/nucleolar chromatin protein ZFP-37 may function to specify neuronal nuclear domains, J. Biol. Chem. 273 (1998) 9099–0100
- [32] K. Palm, M. Metsis, T. Timmusk, Neuron-specific splicing of zinc finger transcription factor REST/NRSF/XBR is frequent in neuroblastomas and conserved in human, mouse and rat, Brain Res. Mol. Brain Res. 72 (1999) 30–39.
- [33] W. Chien, L. Pei, A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product, J. Biol. Chem. 275 (2000) 19422–19427.
- [34] P.W.H. Holland, J. Garcia-Fernandez, N.A. Williams, A. Sidow, Gene duplications and the origins of vertebrate development, Development Suppl. 120 (1994) 125–133.
- [35] L.Z. Holland, N.D. Holland, Chordate origins of the vertebrate central nervous system, Curr. Opin. Neurobiol. 9 (1999) 596–602.